Transcriptome analysis reveals the responsive pathways and genes to potassium (K⁺) deficiency in grapes

Tong-Lu Wei^{a,b,*}, Mao-Song Pei^{a,b}, Hai-Nan Liu^{a,b}, Yi-He Yu^{a,b}, Qiao-Fang Shi^{a,b}, Da-Long Guo^{a,b,*}

^a College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China

^b Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China

*Corresponding authors:

Tong-Lu Wei (weitonglu@haust.edu.cn), Da-Long Guo (guodalong@haust.edu.cn).

Grapevine is sensitive to potassium (K⁺) deficiency, while its underlying responsive mechanisms are unknown. In this study, RNA-sequencing (RNA-seq) was performed with samples of roots and shoots collected under K⁺ deficiency and normal conditions, and numerous differentially expressed genes (DEGs) induced by K⁺ deficiency were identified, including some ion transporter genes, ethylene-responsive transcription factor (ERF) genes, and cell wall biosynthesis-related genes. In roots, genes (especially *ERF*) involving in ethylene signal and cell wall biosynthesis pathway were upregulated and downregulated, respectively; and in shoots, genes involving in ethylene signal and photosynthesis pathway were upregulated and downregulated, suggesting that ethylene signal was activated, while photosynthesis and cell wall biosynthesis were suppressed under K⁺ deficiency treatment. One K⁺ transporter gene of HAK family, VvHAK5, was further identified and cloned. VvHAK5 was specifically expressed in grape roots, and could be significantly induced by K^+ deficiency treatment. VvHAK5 protein was localized in cytomembrane, and could transport K⁺ as revealed by the yeast system assay. Taken together, this study demonstrated the responsive pathways (like ethylene signal, ion homeostasis, and other metabolic pathways) and the key genes (like K^+ transporter VvHAK5) to K^+ deficiency in grapes.